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HIGH-ORDER/SPECTRAL METHODS ON UNSTRUCTURED GRIDS

I. TIME-DOMAIN SOLUTION OF MAXWELL'S EQUATIONS �

J.S. HESTHAVENy AND T. WARBURTONz

Abstract. We present an ab initio development of a convergent high-order accurate scheme for the

solution of linear conservation laws in geometrically complex domains. As our main example we present a

detailed development and analysis of a scheme suitable for the time-domain solution of Maxwell's equations

in a three-dimensional domain. The fully unstructured spatial discretization is made possible by the use of a

high-order nodal basis, employing multivariate Lagrange polynomials de�ned on the triangles and tetrahedra.

Careful choices of the unstructured nodal grid points ensure high-order/spectral accuracy, while the equations

themselves are satis�ed in a discontinuous Galerkin form with the boundary conditions being enforced weakly

through a penalty term. Accuracy, stability, and convergence of the semi-discrete approximation to Maxwell's

equations is established rigorously and bounds on the global divergence error are provided. Concerns related

to eÆcient implementations are discussed in detail.

This sets the stage for the presentation of examples, verifying the theoretical results, as well as illustrating

the versatility, exibility, and robustness when solving two- and three-dimensional benchmarks in computa-

tional electromagnetics. Pure scattering as well as penetration is discussed and high parallel performance of

the scheme is demonstrated.

Subject classi�cation. Applied Mathematics

Key words. high-order/spectral accuracy, stability, convergence, unstructured grids, Maxwell's equa-

tions

1. Introduction. The ability to accurately and reliably model wave-dominated problems continues

to be an essential, and in many cases an enabling, technology in the development and analysis of emerging

technologies such as stealth technology, noise reduction, subsurface exploration and optical communication to

name a few. These are all problems characterized by being very large in terms of a characteristic wavelength,

geometrically extremely complex, often composed of a heterogeneous collection of di�erent materials and all

requiring a high �delity solution with a rigorous control of the numerical errors. Even for linear problems

such conditions forces one to look beyond standard computational techniques and seek new computational

frameworks enabling the accurate, eÆcient, and robust modeling of wave-phenomena over long times in

settings of a realistic geometric complexity.

The requirement that one can accurately propagate waves over many periods of time naturally suggests

that high-order/spectral methods be considered [1]. On the other hand, the use of such methods is tra-

ditionally in conict with the need for signi�cant geometric exibility by being restricted to fairly simple

geometries. The standard approach to overcome this restriction is to introduce a multi-element formulation
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in which the basic building block is parametrically mapped cubes in the spirit of �nite element methods.

This approach has been very successfully applied to the solution of problems in uid mechanics [2, 3, 4],

gasdynamics [5, 6, 7, 8, 9, 10], and electromagnetics [11, 12, 13, 14, 15].

While such techniques, when applicable, are powerful they do su�er from the need to tile the computa-

tional using only hexahedral elements. Unfortunately, automated grid generation using only such elements

for general three-dimensional computational problems of a realistic complexity remains a very nontrivial

task and is typically very time-consuming. Furthermore, spatial adaptation, while certainly possible, is

quite a challenge with a method based solely on hexahedral elements. On the other hand, automated grid

generation employing a fully unstructured grid is signi�cantly more mature, due mainly to extensive devel-

opments within the �nite-element community. Spatial grid adaptation is also considerably easier within a

fully unstructured grid formulation.

It is with these issues in mind that we present an ab initio development of a computational framework

that combines the strengths of a high-order/spectral formulation with the exibility of a fully unstructured

grid. The formulation relies on the resolution of two central issues. On one hand we shall discuss in detail

how to represent functions de�ned on triangles and tetrahedra to high accuracy and how this translates into

the construction of basic operators needed to solve partial di�erential equations. On the other hand we need

to address the issue of how to use such a high-order representation to formulate a convergent scheme suitable

for solving systems of linear hyperbolic problems in general and Maxwell's equations in particular.

Much in the spirit of the original work on spectral element methods [2, 3] we shall focus on the formulation

of eÆcient and exible unstructured grid methods using nodal elements. This is in contrast to past attempts

to develop high-order unstructured grid methods, suitable for solving time dependent problems, which have

been focused on the use of high-order modal expansions, e.g., [16, 17, 18, 19, 20, 21]. In these works, modal

expansions of orthogonal polynomials de�ned on the simplex are utilized while a straightforward monomial

basis is used in [22] (see also [23] and references therein) much in the tradition of classical high-order �nite

element methods for elliptic problems [24, 25].

In contrast to the classical spectral element approach, however, we do not seek a globally continuous

solution but rather require that the equations be satis�ed in a discontinuous Galerkin/penalty fashion. This

is related to the classic discontinuous Galerkin �nite element method [23] although the present approach

represents a more general formulation, containing the classic discontinuous Galerkin formulation as a special

case. Such more general techniques have been known in the context of spectral methods as penalty meth-

ods [26] for a while and recently stable formulations on general one-dimensional [27], triangular [28], and

tetrahedral domains [29] have been discussed. These methods all share the great advantage of a complete

decoupling of all elements, hence enabling high parallel eÆciency, and allows for discontinuous solutions

between elements in a natural way. As we shall see later, this is essential in allowing for the inclusion of

material interfaces in a natural and straightforward manner.

While the majority of what we shall discuss is of a very general nature we have chosen to discuss in detail

the development and analysis of a high-order/spectral accuracy unstructured grid scheme for the solution

of Maxwell's equations in the time-domain. This is not only a challenging problem but also a problem of

signi�cant contemporary interest due to emerging technologies such as broad-band target illumination and

penetration, advanced materials and di�raction based modern optics, all characterized by being electrically

large, having a signi�cant separation of scales and requiring substantial geometric exibility of the compu-

tational framework. On the other hand, Maxwell's equations serve as an excellent example of numerous

other linear hyperbolic systems of equations in, e.g., elasticity, acoustics, solid mechanics etc, for which
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the presented framework can be adapted with little e�ort. In part II of this work [30] we shall discuss in

detail generalizations of the proposed computational framework with an emphasis on the solution of general

systems of conservation laws.

What remains of the paper is organized as follows. In Sec. 2 we set the stage by briey describ-

ing the physical setting, Maxwell's equations, their normalized and scattered �eld formulations, as well as

boundary conditions at material interfaces and metallic boundaries. The �rst step in the construction of

a high-order/spectral unstructured grid scheme for the solution of Maxwell's equations is taken in Sec. 3

where we introduce a Lagrangian high-order basis on the general curvilinear simplex. In the appendix we

include a discussion of techniques allowing for eÆcient and accurate implementations of the basic operators,

e.g., di�erentiation, �ltering, and high-order integration in volumes and on faces. By providing the basic

building block for the spatial approximation, this development sets the stage for the formulation of a high-

order/spectral convergent scheme for solving Maxwell's equations as discussed in Sec. 4. The convergence

of the scheme, being a generalized discontinuous Galerkin/penalty method, is established in the classic way

through consistency as well as local and global stability. A stronger and optimal result is furthermore estab-

lished by showing the scheme to be error-bounded, guaranteeing at most linear growth in time and control

over the growth rate. This result is also used to establish bounds on the behavior of the divergence error.

Veri�cation and performance of the complete scheme is the topic of Sec. 5 where we present a number of

simple tests, verifying the theoretical results, prior to illustrating the eÆciency, versatility, and robustness

of the computational framework for the solution of two- and three-dimensional scattering and penetration

problems. We shall also briey discuss measures taken in the implementation of the scheme to ensure eÆcient

execution on large scale contemporary parallel computational platforms. In Sec. 6 we conclude by o�ering

a few remarks and guidelines for future work within the present framework.

2. The Physical Setting and Maxwell's Equations. We shall concern ourselves with the direct

solution of Maxwell's equations on di�erential form

@ ~D

@~t
= ~r� ~H + ~J ;

@ ~B

@~t
= � ~r� ~E ;(1)

~r � ~D = ~� ; ~r � ~B = 0 ;(2)

within the general three-dimensional domain, 
, with the charge distribution, ~�(~x; ~t). The electric �eld,
~E(~x; ~t), and the electric ux density, ~D(~x; ~t), as well as the magnetic �eld, ~H(~x; ~t), and the magnetic ux

density, ~B(~x; ~t), are related through the constitutive relations

~D = ~" ~E ; ~B = ~� ~H :

The permittivity tensor, ~", as well as the permeability tensor, ~�, are in general anisotropic and may depend

on space and time as well as the strength of the �elds themselves. The current, ~J , is typically assumed to

be related to the electric �eld, ~E, through Ohms law, ~J = ~� ~E, where ~� measures the �nite conductivity,

although more complex relations are possible.

In this work, we shall restrict the attention to materials which can be assumed isotropic, linear and

time-invariant, in which case the constitutive relations take the form

~D = ~"0"r ~E ; ~B = ~�0�r ~H :
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Here ~"0 = 8:854�10�12 F/m and ~�0 = 4��10�7 H/m represent the vacuum permittivity and permeability,

respectively, and "r(x) and �r(x) refers to the relative permittivity and permeability, respectively, of the

materials.

Taking the divergence of Eq.(1) and applying Eq.(2) in combination with Gauss' law for charge conser-

vation immediately con�rms that if the initial conditions satisfy Eq.(2), and the �elds are evolved according

to Maxwell's equations, Eq.(1), the solution will satisfy Eq.(2) at all times. Hence, one can view Eq.(2) as a

consistency condition on the initial conditions and limit the solution to the time-dependent part of Maxwell's

equations, Eq.(1).

To simplify matters further, we shall consider the non-dimensionalized equations for which we introduce

the normalized quantities

x =
~x
~L
; t =

~t
~L=~c0

;

where ~L is a reference length, and ~c0 = (~"0~�0)
�1=2 represents the dimensional vacuum speed of light. The

�elds themselves are normalized as

E =
~Z�10

~E
~H0

; H =
~H
~H0

; J =
~J ~L
~H0

;

where ~Z0 =
p
~�0=~"0 refers to the dimensional free space intrinsic impedance, and ~H0 is a dimensional

reference magnetic �eld strength.

With this normalization Eq.(1) takes the nondimensional form

"r
@E

@t
= r�H + J ; �r

@H

@t
= �r�E ;(3)

which is the general form of the equations we consider in the following.

To solve Maxwell's equations in the vicinity of boundaries, penetrable or not, we shall need boundary

conditions relating the �eld components on either side of the boundary.

Assuming that a normal unit vector, n̂, to the boundary is given, the boundary conditions on the electric

�eld components take the form

n̂� (E1 �E2) = 0 ; n̂ � (D1 �D2) = �s ;

where Ei and Di, i = (1; 2), represent the �elds on either side of the interface and �s represents a surface

charge. Equivalently, the conditions on the magnetic �elds are given as

n̂� (H1 �H2) = Js ; n̂ � (B1 �B2) = 0 ;

where Js represents a surface current density.

In the general case of materials with �nite conductivity, no surface charges and currents can exist, and

the simpli�ed conditions take the form

n̂� (E1 �E2) = 0 ; n̂� (H1 �H2) = 0 ;(4)

expressing continuity of the tangential �eld components, while the normal components of the ux densities

must satisfy
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n̂ � (D1 �D2) = 0 ; n̂ � (B1 �B2) = 0 ;(5)

i.e., they are likewise continuous, while the normal components of the �elds themselves are discontinuous.

For the important special case of a perfect conductor, the conditions take a special form as the perfect

conductor supports surface charges and currents while the �elds are unable to penetrate into the body, i.e.,

n̂�E = 0 ; n̂ �B = 0 :(6)

2.1. The Scattered Field Formulation. For scattering and penetration problems involving linear

materials it is often advantageous to exploit the linearity of Maxwell's equations and solve for the scattered

�eld, (Es;Hs), rather than for the total �eld, (E;H), which are trivially related as

E = Ei +Es ; H =H i +Hs ;

where (Ei;H i) represents the incident �eld, illuminating the scattering object. Assuming that (Ei;Hi)

represents a particular solution to Maxwell's equations, one recovers the scattered �eld formulation

"r
@Es

@t
= r�Hs + �Es � �"r � "ir

� @Ei

@t
+ (� � �i)Ei ;(7)

�r
@Hs

@t
= �r�Es � ��r � �ir

� @Hi

@t
;(8)

where "ir(x), �
i
r(x), and �

i(x) refers to the relative permittivity, permeability and conductivity of the media

in which the incident �eld represents a solution to Maxwell's equations. To simplify matters we have assumed

Ohms law, J = �E. We note that the important special case of a vacuum �eld illuminating the scattering

object is recovered by using "ir = �ir = 1, �i = 0, and using a free space solution in the forcing function.

In this formulation, the boundary conditions along a dielectric interface take the form

n̂� (Es
1 �Es

2) = 0 ; n̂� (Hs
1 �Hs

2) = 0 ;(9)

for the tangential components, while the conditions on the scattered �eld components becomes

n̂�Es = �n̂�Ei ; n̂ �Bs = ��rn̂ �Hi ;(10)

in the case of a perfectly conducting boundary. As we shall see shortly, there is no need to consider the

conditions on the normal components further.

3. The Nodal Element. We shall seek approximate solutions to Maxwell's equations in a general

domain, 
, possibly containing a heterogeneous collection of scattering and penetrable bodies. To facilitate

the required geometric exibility, we represent the computational domain as the union of K non-overlapping

body-conforming d-simplices, D. Hence, for two-dimensional problems we shall use triangles as the geometric

building block while the tetrahedron is employed to �ll the computational volume.
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(x,y,z)=Ψ-1(ξ,η,ζ)

(ξ,η,ζ)=Ψ(x,y,z)

x

y

z

ξ
η

ζ

vI

vII

vIII

vIVv1

v2

v3

v4

na

nbncD I

Fig. 1. Mapping between the curvilinear tetrahedral, D, and the standard tetrahedral, I, including the numbering and

notation employed in the text.

While this multi element formulation is essential in enabling the solution of geometrically complex

problems, it also introduces new complications, the understanding and resolution of which are at the heart

of the construction of the scheme. In particular, the use of simplices requires an understanding of how to

construct high-order accurate Lagrange interpolation polynomials on such elements and, subsequently, how

we can formulate approximations to basic operations such as interpolation, di�erentiation and integration

of functions de�ned on general curvilinear d-simplices. These are issues we shall deal with in the following.

For continuity we shall postpone the discussion of practical, yet essential, techniques for the eÆcient and

accurate implementation of the basic operations to the appendix.

The equally important question of how to exploit this knowledge to construct global high-order/spectral

accuracy solution techniques suitable for Maxwell's equations as well as other linear hyperbolic systems is

the central issue addressed in Section 4.

3.1. The Curvilinear d-Simplex. We start by assuming that the computational domain, 
, is de-

composed into curvilinear d-simplices, D � Rd, as illustrated in Fig. 1 by a 3-simplex, a tetrahedron. For

generality we shall limit much of the discussions to the three-dimensional case and regard the two-dimensional

problem as a natural simpli�cation.

While we shall not require that the faces of the tetrahedron are planar, such an assumption will, as we

shall see shortly, signi�cantly simplify matters in terms of analysis as well as implementation. It should also

be noted that for most computational problems, the vast majority of the elements will have planar faces

which thus supplies the single most important special case.

Let us introduce the standard tetrahedron, I � R3, given by the vertices

vI =

2
64
�1
�1
�1

3
75 ; vII =

2
64

1

�1
�1

3
75 ; vIII =

2
64
�1
1

�1

3
75 ; vIV =

2
64
�1
�1
1

3
75 ;

as illustrated in Fig. 1 with the corresponding vertices in D termed v1-v4. To �x the notation within the

tetrahedron, let us also name the face in D opposite vertex v1, i.e, spanned by the three vertices v2, v3, and

v4, for face 'a', that opposite of vertex v2 for face 'b' and so forth. In general we shall name the coordinates

in the physical simplex, D, as x = (x; y; z) while the coordinates, � 2 I, shall be referred to as � = (�; �; �).
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To relate operations on D to those on I we need to construct a smooth and invertible mapping, 	 : D! I,

that uniquely relates the two simplices as illustrated in Fig. 1. In the case of a general curvilinear mapping,

this can be constructed directly by the use of linear trans�nite blending functions. Although lengthy,

expressions of these mappings are straightforwardly arrived at by blending parameterized versions of faces,

edges, and the vertex-coordinates. For a detailed account of this we refer to [21].

A particularly important and simple case is that of D being straightfaced in which case the mapping

becomes

x = 	(�) = �1 + � + � + �

2
v1 +

1 + �

2
v2 +

1 + �

2
v3 +

1 + �

2
v4 ;(11)

derived directly by exploiting that any point in the straightfaced tetrahedron can be expressed as a convex

sum of the vertices with the weights being the barycentric coordinates (see e.g. [21]).

Once the mapping, 	(�), has been established, we can utilize this to compute the curvilinear metric of

the transformation by

@x

@�

@�

@x
=
@	(�)

@�

@�

@x
=

2
64
x� x� x�

y� y� y�

z� z� z�

3
75
2
64
�x �y �z

�x �y �z

�x �y �z

3
75 =

2
64

1 0 0

0 1 0

0 0 1

3
75 :

Within this new metric, the divergence of a vector �eld, F = (Fx; Fy; Fz), is expressed on the well known

form

r � F =
1

J

�
@

@�
(JF � r�) + @

@�
(JF � r�) + @

@�
(JF � r�)

�
;

where we have introduced the transformation Jacobian

J =

����@x@�
���� = 1

r� � (r� �r�) :

The metric also immediately gives outward pointing normal vectors at the 4 faces of D on the form

na = r� +r� +r� ;

nb = �r� ; nc = �r� ; nd = �r� :

It is worth while paying attention to the special case of the mapping between straightsided tetrahedra,

Eq.(11), in which case we realize that

@x

@�
=
@	(�)

@�
=

1

2

2
64
�vT1 + vT2

�vT1 + vT3

�vT1 + vT4

3
75 ;

is constant. Thus, the full metric, r�, r�, and r�, is constant as is the transformation Jacobian, J , i.e.,

every two straightsided tetrahedra are connected through a simple linear transformation. As we discuss in

detail in the appendix, this observation can be exploited to signi�cantly simplify the implementation of the

general unstructured scheme by introducing template operators.

Let us �nally de�ne a number of di�erent inner products on the curvilinear simplex, D. Consider the

two smooth functions, f [D] 2 C[D] and g[D] 2 C[D] for which f(x) : D ! R and g(x) : D ! R. The global

inner product, the associated L2-norm and the inner product over the surface of D are de�ned as
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(f; g)
D
=

Z
D

f(x)g(x) dx ; (f; f)
D
= kfk2

D
; (f; g)ÆD =

I
ÆD
f(x)g(x) dx :

These local inner products and norms form the basis for the corresponding global broken measures as

(f; g)
 =
X
k

(f; g)
D
k ; (f; f)
 =

X
k

kfk2
D
k = kfk2
 ;

(f; g)Æ
 =
X
k

I
ÆDk

f(x)g(x) dx ;

where K represents the total number of elements used to cover 
.

3.2. A Multivariate Polynomial Basis on the d-Simplex. With the curvilinear framework in place

we can now focus the attention on the development of a high-order/spectral representation of a function

de�ned on the elemental element, I, rather than a general D.

Contrary to the approach taken in [17, 21], where a purely modal approximation is utilized, we shall em-

ploy a purely nodal scheme. Hence, we assume that the unknown solutions, q(�; t), can be well approximated

as

qN (�; t) =

NX
j=0

q(�j ; t)Lj(�) ;

where Lj(�) is the genuine three-dimensional multivariate Lagrange interpolation polynomial, Lj(�) 2 P3
n,

where

P3
n = span

�
�i�j�k ; i; j; k � 0; i+ j + k � n

	
;

based on the N3
n = N + 1 nodal points, �j , given in the interior as well as on the boundary of I. It is

straightforward to see that the minimum number of nodal points that will allow this basis to be complete is

N3
n =

1

6
(n+ 1)(n+ 2)(n+ 3) ;

where n signi�es the maximum order of the polynomial.

The crucial choice of a nodal set, well suited for Lagrange interpolation within the tetrahedron, is an

issue that has received some attention lately with such nodal sets being given in [31] and [29]. The former

is derived by using an minimization procedure for the identi�cation of the nodal set that minimizes an

approximation to the Lebesque constant while the approach taken in the latter work involves the solution of

an electrostatic problem within the tetrahedron. Either procedure results in fully unstructured nodal sets, an

example of which is given in Fig. 2, with a large degree of symmetry, exactlyN3
n nodes within the tetrahedron

and a very well behaved Lagrange polynomial as measured through the growth of the associated Lebesque

constant. Furthermore, both nodal sets include the 4 vertices in I and have exactly 1
2 (n + 1)(n + 2) nodes

at each of the four faces. This latter property is important as it ensures that a complete two-dimensional

polynomial is supported by the nodes on each face.

In this work we have chosen to use the nodal set from [29] as the nodes on which the Lagrange interpo-

lation polynomials are based. These nodal sets are given for n up to 10, corresponding to N3
10 = 286 nodal

points within each tetrahedron and 66 nodal points at each face.
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X
Y

Z

a) b)

Fig. 2. Example of nodal set for a 5th order interpolation, i.e., N3

5
= 56 nodes within the tetrahedron. In a) we show a

3D view of the nodes within the tetrahedron while b) gives a top view emphasizing the high degree of symmetry associated with

the nodal set.

Once we have identi�ed a proper nodal set, we can proceed with the formulation of the interpolation

which must have the property

I3Nf(�j) = f(�j) ;

for any f 2 C[I]. For the actual construction of the interpolation polynomials, let us introduce the complete

polynomial basis, pi(�) 2 P3
n and express the interpolation property as

8i : f(�i) =

NX
j=0

f̂jpj(�i) ;(12)

or in compact form

Vf̂ = f ;

where f̂ = [f̂0; ::; f̂N ]
T is the vector of expansion coeÆcients, f = [f(�0); ::; f(�N )]

T is the grid vector

and Vij = pj(�i) is the multi-dimensional generalization of the Vandermonde matrix. Clearly, for the

interpolation to exist, V must be nonsingular which is a property that depends solely on the nodal sets. For

polynomial interpolation along the line it is well known that jVj 6= 0 provided that the nodes are distinct.

Unfortunately, no such simple results are known for polynomial interpolation in I and we shall simply rely

on computational veri�cation that the nodal sets indeed allow for the computation of a unique interpolation

polynomial[29]. Under this assumption we can likewise express Eq.(12) as

8i : f(�i) =
NX
j=0

f(�i)Lj(�i) ;(13)

which has to be true for any f 2 C[I], and in particular pi(�) itself. Hence, the Lagrange polynomials can be

evaluated at any point, � 2 I, by solving the dual problem

VTL = p ;(14)
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where L = [L0(�); ::; LN (�)]
T and p = [p0(�); ::; pN (�)]

T . This naturally enables the evaluation of I3Nf(�)
anywhere in I by computing Lj(�) and applying Eq.(13).

In seeking the approximate solution to partial di�erential equations, the single most important operation

is that of computing approximations to spatial derivatives. However, once we have identi�ed a well behaved

Lagrange basis, approximations to spatial derivatives evaluated at the grid points, �i, is obtained directly

through matrix-vector products as

I3n
@f

@�
' @I3nf

@�
= D�f ; I3n

@f

@�
' @I3nf

@�
= D�f ; I3n

@f

@�
' @I3nf

@�
= D�f ;

where the entries of the quadratic di�erentiation matrices are obtained as

D�
ij =

@Lj(�i)

@�
; D�

ij =
@Lj(�i)

@�
; D�

ij =
@Lj(�i)

@�
:

The entries can be computed directly by using Eq.(14) and the uniqueness of the polynomials as

D� = P�V�1 ; D� = P�V�1 ; D� = P�V�1 ;

where the entries of P(�;�;�) are

P�
ij =

@pj(�i)

@�
; P�

ij =
@pj(�i)

@�
; P�

ij =
@pj(�i)

@�
:(15)

4. A Convergent Scheme for Maxwell's Equations. Having realized high-order formulations of

basic operations on the nodal tetrahedron, we are now in a position to develop a scheme suitable for solving

linear systems of hyperbolic problems in complex geometries, exempli�ed by a scheme for solving Maxwell's

equations.

To simplify matters, let us express Maxwell's equations, Eq.(3), in conservation form

@q

@t
+r � F (q) = S ;(16)

where we have introduced the state vector, q, and F (q) = [F1(q); F2(q); F3(q)]
T , as the ux de�ned as

q =

"
"rE

�rH

#
; Fi(q) =

"
�ei �H
ei �E

#
;

respectively. Here ei signi�es the three Cartesian unit vectors and S = [SE ;SH ]T represents body forces,

e.g., currents, and terms introduced by the scattered �eld formulation, Eqs. (7)-(8).

4.1. Central Elements of the Scheme. Let us begin by introducing the nodal basis discussed in the

previous section and assume that the statevector, q, can be represented as

qN (x; t) =

NX
j=0

q(xj ; t)Lj(x) ;

within each general curvilinear element, Dk.

We shall consider schemes in which we require Eq.(16) to be satis�ed in the following way

Z
D

�
@qN
@t

+r � FN � SN

�
�i(x) dx =

I
ÆD
 i(x)G([qN ]) dx :(17)

10



Here �i and  i signify sequences of N functions whileG([qN ]) is a function of the jump [qN ] of the statevector

at the boundary/interface of the element, e.g., if the face is at a solid boundary [qN ] reects the di�erence

between the prescribed boundary condition and the actual value of the statevector.

Let us emphasizing a few characteristics of this general formulation, Eq.(17). In particular we see that

consistency of the scheme is immediate as the right hand side of Eq.(17) vanishes when the exact solution is

introduced, i.e., if the inner scheme is consistent so is the full approximation. One should also observe that

boundary/interface conditions are not imposed exactly but rather weakly through the penalizing surface

integral. Finally we emphasize that in a multi-element context, the formulation is inherently discontinuous,

enforcing the interface conditions weakly through the penalizing term and giving rise to a highly parallel

formulation of the scheme.

In choosing �i,  i andG([qN ]) one has a tremendous degree of freedom in designing schemes suitable for

solving di�erential equations. In [10] we proposed stable spectral collocation methods with weakly imposed

boundary/interface conditions for solving the advection-di�usion equation and the compressible Navier-

Stokes equations by choosing �i(x) =  i(x) = Æ(x�xi) and de�ning G([qN ]) to impose the correct upwind

ux conditions. Alternative choices, likewise leading to stable schemes for solving linear conservation laws,

were discussed in [28, 29]. There we considered mixed Galerkin-collocation formulations by choosing �i(x) =

Li(x), as in a classic Galerkin formulation, but using  i(x) = Æ(x � xi) to impose the boundary/interface

conditions. Upwind ux conditions were used to construct G([qN ]).

To formulate a scheme for Maxwell's equations, let us assume that the electric, E, and magnetic, H,

�eld components can be represented as

EN (x; t) =

NX
j=0

E(xj ; t)Lj(x) =

NX
j=0

Ej(t)Lj(x) ;

HN (x; t) =
NX
j=0

H(xj ; t)Lj(x) =
NX
j=0

Hi(t)Lj(x) ;

within each general curvilinear element, Dk. Here Ej(t) and Hj(t) represent the time dependent nodal

values, i.e., the unknowns of the scheme, while xj = xj(�j) are the mapped nodal coordinates.

We shall require that the equations, Eq.(3), be satis�ed in the following Galerkin-like way

Z
D

�
@qN
@t

+r � FN � SN

�
Li(x) dx =

I
ÆD
�(x)Li(x)n̂ � [F+

N ] dx ;(18)

where qN , FN , and SN refers to the approximate state vector, ux and body force, respectively. As in Sec.

3, Li(x) represents the n'th order Lagrange interpolation polynomial, i.e., in the language of the general

formulation in Eq.(17) we have �i(x) =  i(x) = Li(x), while we have G([qN ]) = �(x)n̂ � [F+
N ]. Here n̂ is

the outward pointing normal vector, �(x) is a free parameter to be speci�ed later, while [F+
N ] reects the

jump in the upwind ux, i.e., we have introduced the splitting, FN = F+
N +F�

N , into the upwind, F
+
N , and

downwind, F�
N , component of the ux.

It is noteworthy that the classical discontinuous Galerkin formulation [23] is recovered from Eq.(18) by

a simple integration by parts and considering all uxes at interfaces as upwind uxes, i.e., it is a special case

of the much more general approach put forward in Eq.(17).

To understand the exact form of the penalizing ux term, n̂ � [F+
N ], it is helpful to recall that

11



n̂ � FN =

"
�n̂�HN

n̂�EN

#
;

i.e., the normal component of the uxes represents nothing else than the tangential �eld components and

the e�ect of the right hand side in Eq.(18) is to impose the correct boundary/interface conditions on the

tangential �eld components at the face of the element. It is worth noticing that the unspeci�ed function,

�(x), controls how strongly the conditions are enforced, e.g. if � is very large the conditions are essentially

enforced exactly.

As discussed in Sec. 2 the boundary conditions on the tangential �eld components, be that in the

scattered �eld or in the total �eld formulation, require continuity between any two elements regardless of

their material properties. This yields the explicit form of the penalizing boundary term as [32]

n̂ � �F+
N

�
=

(
Z
�1
n̂� (Z+[HN ]� n̂� [EN ])

Y
�1
n̂� (�n̂� [HN ]� Y +[EN ])

;(19)

where

[EN ] = E+
N �E�

N ; [HN ] =H+
N �H�

N ;

measures the jump in the �eld values across an interface, i.e., superscript '+' refers to �eld values from the

neighbor element while superscript '-' refers to �eld values local to the element. To account for the potential

di�erences in material properties in the two elements, we have introduced the local impedance, Z�, and

conductance, Y �, de�ned as

Z� =
1

Y �
=

s
��r

"�r
;

and the sums

Z = Z+ + Z� ; Y = Y + + Y � ;

of the local impedance and conductance, respectively.

The special case of a perfectly conducting wall is handled in the above formulation be de�ning a mirror

state within the metallic scatterer as

n̂�E+
N = �n̂�E�

N ; n̂�H+
N = n̂�H�

N ;

to enforce the correct boundary conditions and de�ne the material parameters by Z+ = Z�.

Now returning to the semi-discrete scheme, Eq.(18), we have an elementwise expression for the electric

�eld

NX
j=0

�
M"

ij

dEj

dt
� Sij �Hj �MijS

E
j

�
(20)

=
X
l

Fil

�
n̂l � Z+

l [H l]� n̂l � [El]

Z+
l + Z�l

�
;

12



and likewise for the magnetic �eld components

NX
j=0

�
M�

ij

dHj

dt
+ Sij �Ej �MijS

H
j

�
(21)

=
X
l

Fil

�
n̂l � �n̂l � [H l]� Y +

l [El]

Y +
l + Y �l

�
:

Here we have introduced

M"
ij = (Li(x); "(x)Lj(x))D ; M�

ij = (Li(x); �(x)Lj(x))D ;

as the material scaled mass-matrices and

Mij = (Li(x); Lj(x))D ; Sij =
�
Sxij ; S

y
ij ; S

z
ij

�
= (Li(x);rLj(x))D ;

representing the local mass- and sti�ness matrix. Note that in the special case where "r and �r are elemen-

twise constant, we recover (M";M�) = ("rM; �rM).

We have, furthermore, introduced the face-based mass matrices

Fil = (Li(x); �(x)Ll(x))ÆD ;

where the second index is limited to the trace of the nodal set situated at the faces of D.

Expressing Eqs.(20)-(21) in fully explicit form yields

dEN

dt
=(M")

�1
S�HN + (M")

�1
MSE(22)

+ (M")�1 F

�
n̂� Z+[HN ]� n̂� [EN ]

Z+ + Z�

�����
ÆD

;

and

dHN

dt
=� (M�)

�1
S�EN + (M�)

�1
MSH(23)

� (M�)�1 F

�
n̂� n̂� [HN ] + Y +[EN ]

Y + + Y �

�����
ÆD

:

The discrete operators that need to be initialized are, besides the mass-matrices, M and M";�, which can be

computed exactly as described in the appendix and inverted straightforwardly. We shall also need

(M";�)�1 S = (M";�)�1 [Sx; Sy; Sz]T ;

representing the general curvilinear di�erentiation matrix, as well as (M";�)�1M for source terms. It is

worth noticing that for all straightfaced tetrahedra with constant material parameters, the entries of S can

be formed directly by combinations of the classical di�erentiation matrices introduced in Sec. 3, e.g.,

M�1Sx = D��x +D��x +D��x ;

and similarly for M�1Sy and M�1Sz. Hence, as discussed in detail in the appendix, template matrices can be

used for the initialization of these operators in all such elements while an individual initialization is required

for general curved elements and elements with smoothly varying material parameters.

The same holds true for the face-based operators M�1F which again can be precomputed for all straight-

faced elements with constant materials by linear scaling from standard template operators for I. The general

curvilinear faces requires individual attention.
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4.2. Consistency. In analyzing the scheme, Eqs.(22)-(23), it is natural �rst to consider the global

accuracy, and hence consistency, and how it depends on the size of the tetrahedra, i.e., its h-convergence

rate, as well as how it scales with the order, n, of the polynomial approximation. To simplify matters we

shall assume throughout that all elements involved are straightfaced, i.e., the transformation between D

and I is linear. We shall furthermore assume that the material parameters, "r and �r, be constant on each

element, but they can vary freely between elements. We shall later briey revisit the impact on the results

of the analysis of relaxing these assumptions.

Let us introduce the exact solution, q = [E;H], to Maxwell's equations, Eq.(3), as well as its projection,

PNq = [PNE;PNH]T , on the space spanned by n-order polynomials, i.e., PNq 2 P3
n. Except in very special

cases PNq will generally be di�erent from the numerical solution, qN = [EN ;HN ]
T , which is the exact

solution to the discrete problem, Eqs.(22)-(23).

Before we continue we wish to note that a subtle consequence of using a purely nodal basis, as opposed to

a modal basis, is the introduction of a discrete aliasing error in the interpolation of the initial conditions. One

could avoid this by reading the nodal values of the Galerkin projection of the initial conditions, computed by

using a quadrature of suÆciently high order. However, if the initial conditions are smooth and well resolved

this discrete aliasing error is small and we shall not discuss it further in what follows.

As the global error is bounded by the sum of the local, element-wise errors, it suÆces to consider the

latter. Introducing the exact solution, q = [E;H], to Maxwell's equations, Eq.(3), into the semi-discrete

approximation, Eqs.(20)-(21), immediately yields

�
Li;T

E
�
D

= (Li;r�H �PNr�H)
D
+
�
Li;S

E �PNS
E
�
D

;

�
Li;T

H
�
D

= � (Li;r�E �PNr�E)
D
+
�
Li;S

H �PNS
H
�
D

;

where T q =
h
TE ;TH

iT
signi�es the truncation error associated with the scheme. Note in particular that

the surface terms of Eqs.(20)-(21) vanish identically as the exact solution always has smooth tangential

components as dictated by the physics.

To bound the truncation error we shall need the following result [33, 24, 25]

Lemma 4.1. Assume that u 2 W p(D), p � 0. Then there exists a constant, C, dependent on p and the

angle condition of D, but independent of u, h = diam(D), and n, such that

ku�PNukW q(D) � C
h��q

np�q
kukWp(D) ;

where � = min(p; n+ 1) and 0 � q � �.

Here we have introduced the standard Sobolev norm

kuk2Wp(D) =
X
j�j�p

 @�1@x�1
@�2

@x�2
@�3

@x�3
u


2

D

;

with the multi-index, � = (�1; �2; �3).

With this result and the use of the Cauchy-Schwarz inequality we immediately recover the consistency

result

Theorem 4.2. Assume that the exact solution, q = [E;H ]
T 2 W p(D), p � 1 and that the body forces,

Sq =
h
SE ;SH

iT
2W p(D), p � 0. Then there exists a constant, C, dependent on p and the angle condition

of D, but independent of q, h = diam(D), and n, such that
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kT qk
D
� C

�
h��1

np�1
kqkWp(D) +

h�

np
kSqkWp(D)

�
;

where � = min(p; n+ 1).

Hence, if the solution is locally smooth we can expect very rapid convergence in the order of the approx-

imation as well as by decreasing the element size. In particular, if the solution is analytic we can expect to

recover full spectral convergence provided the scheme is stable.

4.3. Stability. Let us attend to the issue of semi-discrete stability and de�ne the local energy

Ek =
1

2

Z
D
k

�
�jH j2 + "jEj2� dx ;

and the associated global energy, E =
P

k E
k.

Local elementwise semi-discrete stability is stated as follows

Lemma 4.3 (Local Stability). Assume that a solution to Maxwell's equations exists on the domain D.

If the faces of the element reside away from a perfect conductor, stability of the semi-discrete approximation

to Maxwell's equations, Eqs.(22)-(23), is guaranteed provided

� � 1

3
:

In case one of the faces coincides with a perfect conductor, stability of the semi-discrete approximation is

guaranteed if

� = 1 :

Proof. For local stability away from metallic boundaries, it suÆces to consider the question of stability for

homogeneous boundary conditions, i.e., E+
N =H+

N = 0. Consider Maxwell's equations on the semi-discrete

form, Eqs.(20)-(21), multiply from the left with (Ej ;Hj) and sum over all the nodes in D to obtain

1

2

d

dt
(EN ; "EN )D = (EN ;r�HN )D +

�
EN ;S

E
�
D

�
I
ÆD
�EN �

�
n̂� Z+HN � n̂�EN

Z+ + Z�

�
dx ;

and

1

2

d

dt
(HN ; �HN )D = � (HN ;r�EN )D +

�
HN ;S

H
�
D

+

I
ÆD
�HN �

�
n̂� Y +EN + n̂�HN

Y + + Y �

�
dx :

Adding the two contributions and applying the the divergence theorem yields

d

dt
Ek =

I
ÆD
(1� �)n̂ � (HN �EN ) dx

+

I
ÆD

�
�

Z
EN � n̂� n̂�EN +

�

Y
HN � n̂� n̂�HN

�
dx

+
�
EN ;S

E
�
D

+
�
HN ;S

H
�
D

:
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Using standard vector identities this simpli�es as

d

dt
Ek =�

I
ÆD

�
(1� �)HN � n̂�EN +

�

Z
jn̂�EN j2 + �

Y
jn̂�HN j2

�
dx

+
�
EN ;S

E
�
D

+
�
HN ;S

H
�
D

:

To ensure semi-discrete stability it suÆces to require that

(1� �)HT
NREN +

�

Z
ET

NR
TREN +

�

Y
HT

NR
TRHN � 0 ;(24)

where we have introduced the rotation matrix

R = R(n̂) =

2
64

0 �nz ny

nz 0 �nx
�ny nx 0

3
75 :

Expressing the quadratic form, Eq.(24), as qTNAqN with A reecting Eq.(24), one recovers the �rst two

eigenvalues of A as �1;2(A) = 0 while the remaining are given as

�3;4 =
�(1 + Z)�

q
�2(1 + Z)2 + Z

2
(�3�2 � 2� + 1)

2Z
;

and

�5;6 =
�(1 + Y )�

q
�2(1 + Y )2 + Y

2
(�3�2 � 2� + 1)

2Y
:

Hence, a suÆcient condition for stability clearly is that � � 0 and �3�2 � 2� + 1 � 0, i.e.,

� � 1

3
:

In case a face resides at a metallic conductor we employ the boundary conditions

n̂�E�
N = �n̂�E+

N ; n̂�H�
N = n̂�H+

N ;

and Z+ = Z� = Z, Y + = Y � = Y .

Following the exact same procedure as above, we recover the constraint

(1� �)HT
NRE +

�

2Z
ET

NR
TREN � 0 :

Computing the eigenvalues of the corresponding quadratic form yields two pairs of the form

�1 = 0 ; �2;3 =
�

Z
� 1

Z

p
�2 + Z2(� � 1)2 :

Clearly, the only way to guarantee positivity of the eigenvalues and hence the quadratic form is to choose

� = 1.

The result on local, elementwise stability, only supplies a necessary but not suÆcient condition for

stability. To understand the issue of global stability we must also consider the inuence of the coupling

between the individual elements.
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Lemma 4.4 (Face Stability). Assume that a solution to the Maxwell's equations exists on a domain con-

sisting of two elements sharing one common face. Stability of the semi-discrete approximation of Maxwell's

equations, Eqs.(22)-(23), on this domain is guaranteed provided

� = 1 :

Proof. Consider Maxwell's equations on the semi-discrete form, Eqs.(20)-(21). Multiply from the left

with (Ej ;Hj) and sum over all the nodes in D to obtain

1

2

d

dt

�
E�

N ; "E
�
N

�
D
=
�
E�

N ;r�H�
N

�
D
+
�
E�

N ;S
E
�
D

+

I
ÆD
�E�

N �
�
n̂
� � Z+[HN ]� n̂� � [EN ]

Z+ + Z�

�
dx ;

and

1

2

d

dt

�
H�

N ; �H
�
N

�
D
= � �H�

N ;r�E�
N

�
D
+
�
H�

N ;S
H
�
D

�
I
ÆD
�H�

N �
�
n̂
� � Y +[EN ] + n̂� [HN ]

Y + + Y �

�
dx :

Addition of the two contributions, application of the divergence theorem and standard vector identities yields

d

dt
Ek =

I
ÆD
(1� �)n̂� � �H�

N �E�
N

�
+�

�
Y +

Y
E�

N � �n̂� �H+
N

�� Z+

Z
H�

N � �n̂� �E+
N

��

��
�
1

Z
E�

N � �n̂� � �n̂� � [EN ]
��

+
1

Y
H�

N � �n̂� � �n̂� � [HN ]
���

dx

+
�
E�

N ;S
E
�
D

+
�
H�

N ;S
H
�
D

:

To understand the stability of a common edge, it suÆces to consider the case where SE = SH = 0. Adding

the contribution from two edges, utilizing that n̂� = �n̂+, yields

d

dt
E =

I
ÆD
(1� �)

�
n̂
� �H�

N �E�
N � n̂� �H+

N �E+
N

�
+
�

Z
[EN ] � n̂� � n̂� � [EN ] +

�

Y
[HN ] � n̂� � n̂� � [HN ] dx

=�
I
ÆD
(1� �)n̂� � �H+

N �E+
N �H�

N �E�
N

�
� �

Z
jn̂� � [EN ]j2 � �

Y
jn̂� � [HN ]j2 dx :

A suÆcient condition for this to be negative is

(1� �)
��
H�

N

�T
RE�

N � �H+
N

�T
RE+

N

�
+

�

Z
[EN ]

TRTR[EN ]
T +

�

Y
[HN ]

TRTR[HN ]
T � 0 :
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Inspection reveals that by de�ning q = [E+
N ;E

�
N ;H

+
N ;H

�
N ]

T , the condition may be expressed is given as a

symmetric quadratic form, i.e., it suÆces to choose � such that all eigenvalues of A are non-negative. Leaving

out the lengthy and purely algebraic manipulations, we consider the resulting two sets of eigenvalues of A

given as

�1;2 = 0 ; �3;4 =
�

Z
� 1

2Z

q
4�2 + Z(� � 1)2 ;

and

�5;6 =
�

Y
� 1

2Y

q
4�2 + Y (� � 1)2 :

Clearly, the choice of � = 1 is the only feasible solution that ensures stability of the upwind scheme used for

connecting the elements.

With these results in place, we can now state

Theorem 4.5 (Global Stability). Assume that a unique solution to Maxwell's equations exists in the

general domain, 
. Assume furthermore that the boundary of 
 is either periodic or terminated with a

perfectly conducting boundary.

Then the semi-discrete approximation to Maxwell's equations, Eqs.(22)-(23), is globally stable in the

sense that

d

dt
E � C

�
E +

SE
2


+
SH

2



�
;

provided only that

� = 1 :

Proof. As each face is counted only once, the result follows directly by summation over the all the faces

and the application of Lemma 4.3 and Lemma 4.4

d

dt
E �

X
k

�
EN ;S

E
�
D
k
+
�
HN ;S

H
�
D
k

� C

�
E +

SE
2


+
SH

2



�
;

using that
�
EN ;S

E
�
D

� C(kENk2D +
SE

2
D

), kENk2D � C (EN ; "rEN )D since " � 1. A similar line of

reasoning is applicable for
�
HN ;S

H
�
D

and the result on global stability follows.

4.4. Convergence. Having established consistency as well as stability in equivalent norms, convergence

follows directly from the equivalence theorem with a bound on the local error

"D(t) = kE(t)�EN (t)kD + kH(t)�HN (t)kD ;

of the form

"D(t) � Ce�t
�
"D(0) +

Z t

0

kT q(s)k
D
ds

�
;
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and global convergence is hence established up to exponential growth in time as is typical for Lax-type

stability results.

As it turns out, however, we can do better and recover a sharp bound for the growth in time by

generalizing ideas �rst put forward in the context of �nite di�erence methods [34]. To realize this, let us

make the natural split of the elementwise error as

"D � (kE �PNEkD + kH �PNHk
D
) + (kPNE �ENkD + kPNN �HNkD)

= "a
D
+ "b

D
;

where "a
D
is due to the error introduced by the polynomial approximation of the exact solution while "b

D

measures the errors associated with the semi-discrete approximation of Maxwell's equations.

To bound "a
D
we need only recall Lemma 4.1 to state

Lemma 4.6. Assume that q = [E;H]
T 2 W p(D). Then there exists a constant, C, dependent on p and

the angle condition of D, but independent of q, h = diam(D), and n, such that

kq �PNqkD � C
h�

np
kqkWp(D) ;

where � = min(p; n+ 1) and p � 0.

To arrive at a bound for "b
D
, let us �rst consider the projection of the truncation error, PNT

q =h
PNT

E ;PNT
H
iT
, on the form

�
Li;PNT

E
�
D

=(Li;PNr�H �PNr�PNH)
D

(25)

� 1

Z

�
Li; n̂�

�
Z+[PNH]� n̂� [PNE]

��
ÆD

;

�
Li;PNT

H
�
D

=� (Li;PNr�E �PNr�PNE)D(26)

� 1

Y

�
Li; n̂�

��Y +[PNE]� n̂� [PNH]
��

ÆD
:

This is derived by introducing PNq into the semi-discrete scheme, Eqs.(20)-(21), exploiting that q satis�es

Maxwell's equations, Eq.(3).

The projection of the truncation error can be bounded by the exact solution as

Lemma 4.7. Assume that q = [E;H]
T 2 W p(D); p � 3=2. Then there exists a constant, C, dependent

on p, the angle condition of D and the local material properties, "r; �r, but independent of q, h = diam(D),

and n, such that

kPNT
qk

D
� C

h��1

np�3=2
kqkWp(D) ;

where � = min(p; n+ 1).

Proof. We need only establish the result for PNT
E , Eq.(25), as the derivation of the result for PNT

E

following identical lines.

As PNT
E 2 P3

n =
P

j T
E
j Lj(x) we can multiply from the left with TE

j and sum over all the nodes to

recover
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PNT
E
2
D

=
�
PNT

E ;PNr� (H �PNH)
�
D

� 1

Z

�
PNT

E ; n̂� �Z+[PNH ]� n̂� [PNE]
��

ÆD
:

Using the Cauchy-Schwarz inequality and the estimate [25]

kqNkÆD � C
n

h1=2
kqNkD ;

for all q 2 P3
n(D), h = diam(D), we recover

PNT
E

D

�C1 kPNr� (H � PNH)k
D

(27)

+C2
n

h1=2
1

Z

Z+[PNH� ]� [PNE� ]

ÆD

;

where we for simplicity have introduced the tangential components

E� = n̂�E ; H� = n̂�H :

To bound the �rst term we invoke Lemma 4.1 to obtain

kPNr� (H �PNH)k
D
� kr� (H �PNH)k

D
� C

h��1

np�1
kHkWp(D) :(28)

Consider now terms of the type

k[PNE� ]kÆD �
PNE

+
� �E+

�


ÆD

+
PNE

�
� �E�

�


ÆD

;

where E+
� = E�

� = E� represents the exact solution at ÆD. Recalling the trace inequality [35]

kqk2ÆD � C
�
kqk

D
krqk

D
+ h�1 kqk2

D

�
; q 2W 1(D) ;

implies that

kq �PNqk2ÆD � C
�
kq �PNqkD kq �PNqkW 1(D) + h�1 kq �PNqk2D

�
;

and we recover by combination with Lemma 4.1 the bound

k[PNE� ]kÆD � C
h��1=2

np�1=2
kEkWp(D) :

Combining this with Eqs.(27)-(28) one obtains the result

PNT
E

D

� C1
h��1

np�1
kHkWp(D) + C2

h��1

np�3=2

�
kEkWp(D) + kHkWp(D)

�
;

where (C1; C2) are independent of h and n but C2 depends on the local material properties (Z�; Y �).

The result for
PNT

H

D

is recovered in the same way, yielding the result

PNT
H

D

� C1
h��1

np�1
kEkWp(D) + C2

h��1

np�3=2

�
kEkWp(D) + kHkWp(D)

�
;
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hence establishing the stated result.

Let us now return to the original quest for an improved convergence estimate and consider the error

equation

�
Li; "

@

@t
(PNE �EN )

�
D

=(Li;PNr� (PNE �EN ))D(29)

+
1

Z

�
Li; n̂�

�
Z+[PNH �HN ]� n̂� [PNE �EN ]

��
ÆD

+
�
Li;PNT

E
�
D

;

for the electric �eld and similarly for the magnetic �eld

�
Li; �

@

@t
(PNH �HN )

�
D

=� (Li;PNr� (PNH �HN ))D(30)

� 1

Y

�
Li; n̂�

�
Y +[PNE �EN ] + n̂� [PNH �HN ]

��
ÆD

+
�
Li;PNT

H
�
D

:

The combination of these expressions with Lemma 4.7 and the methodology of the stability proof in Sec.

4.3 yields the improved convergence result

Theorem 4.8. Assume that a solution, q 2 W p(D), p � 3=2 to Maxwell's equations in 
 =
S

k D
k

exists. Then the numerical solution, qN , to the semi-discrete approximation Eqs.(22)-(23) converges to the

exact solution and the global error,
P

k kq � qNkDk is bounded as

X
k

kq(t)� qN (t)kDk �C
X
k

�kq(t)�PNq(t)kDk

+ kPNq(0)� qN (0)kDk + t max
s2[0;t]

kT q(s)k
D
k

�

�C
X
k

�
h�

np
kq(0)kWp(Dk) + t

h��1

np�3=2
max
s2[0;t]

kq(s)kWp(Dk)

�
;

where C depends on the material properties and the angle conditions of the elements but not on h and n.

Proof. Since PNE �EN 2 P3
n and PNH �HN 2 P3

n we can use these as elementwise test functions in

Eq.(29) and Eq.(30), respectively, to obtain

1

2

d

dt
((PNE �EN ; "(PNE �EN ))D + (PNH �HN ; "(PNH �HN ))D)

=

I
ÆD

(n̂ � (PNH �HN )� (PNE �EN )

+
1

Z
(PNE �EN ) � n̂�

�
Z+[PNH �HN ]� n̂� [PNE �EN ]

�
� 1

Y
(PNH �HN ) � n̂�

�
Y +[PNE �EN ] + n̂� [PNH �HN ]

��
dx�

PNE �EN ;T
E
�
D

+
�
PNH �HN ;T

H
�
D

;

where we have employed integration by parts once. Following the approach of Lemma 4.4 we sum over all

the faces to obtain
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1

2

d

dt

X
k

�
(PNE �EN ; "(PNE �EN ))Dk + (PNH �HN ; "(PNH �HN ))Dk

�
��

X
k

h
k[PNE �EN ]k2Dk + k[PNH �HN ]k2Dk

i

+
X
k

h�
PNE �EN ;PNT

E
�
D
k
+
�
PNH �HN ;PNT

H
�
D
k

i
:

Note that since " and � are uniformly bounded away from zero the material weighted energy norm is L2-

equivalent. Furthermore, the term associated with the jump at the element interfaces is strictly negative

and we recover the bound on the error

1

2

d

dt

X
k

kPNq � qNk2Dk � C
X
k

(PNq � qN ;PNT
q)
D
k ;

which, by using the Cauchy-Schwarz inequality and integration in time yields the result

X
k

kPNq(t)� qN (t)kDk � C
X
k

�
kPNq(0)� qN(0)kDk + t max

s2[0;t]
kPNT

q(s)k
D
k

�
:

Now combining this with Lemma 4.6 and Lemma 4.7 establishes the result and proves convergence on weak

assumptions of local, elementwise smoothness of the solution.

We have hence established the semi-discrete result that the error can not grow faster than linearly in

time and that we can control the growth rate by increasing the resolution. As we shall verify in Sec. 5 this

linear growth is a sharp result. However, the computations shall also verify that we can expect that the

growth rate approaches zero spectrally fast when increasing the order of the approximation, n, provided the

solution is suÆciently smooth.

Prior to that, a few comments are in place. A rigorous generalization of the results obtained above

to cover situations with general curvilinear elements and/or spatial variation of the materials within each

element is not straightforward. This is due to the generation of higher order polynomials from the products

of the individual polynomial expressions of the �elds, the materials and the geometry. One can, however,

gain an intuitive understanding of how the geometry and material variations may impact the accuracy by

assuming that the polynomial representations are not of the �elds only but rather of the combined functions,p
J(
p
"rE;

p
�rH). In this case, we are working only with n-order polynomial expansions and one can expect

that the overall picture from the results derived above will hold approximately for these new functions.

Hence, where we originally had an n'th order polynomial to represent the �elds, (E;H) we are now left

with an n'th order polynomial to represent the combined variation. One consequence of this is that we loose

accuracy when considering only the �elds as we essentially have to share the resolution power between the

�elds, the geometry as well as the material variation. In particular, if the element is strongly distorted,

i.e., J varies signi�cantly, one can expect loss of accuracy as compared to the straightsided approximation.

Provided, however, that the geometry is smooth, i.e., J nonsingular, and the local material variation is

smooth, spectral convergence is preserved.

4.5. Convergence of Divergence Error. In the absence of sources, it is well known that the electric

and the magnetic �elds must remain solenoidal throughout the computation. An assumption to this e�ect

was indeed imposed by choosing to solve only Maxwell's equations on the form Eq.(3) and considering the

divergence conditions as consistency conditions on the initial conditions. However, given that we can not
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expect to recover the projection of the analytic solution but rather will compute a di�erent, albeit convergent,

solution we need to consider the divergence of this numerical solution to justify the original choice of solving

Eq.(3) only.

Using the results of Sec. 4.4 we can state

Theorem 4.9. Assume that a solution, q 2 W p(D), p � 7=2 to Maxwell's equations in 
 =
S

k D
k

exists. Then there exists a constant, C, dependent on p and the angle condition of Dk, but independent

of q, h = diam(D), and n, such that the divergence of the numerical solution, qN , to the semi-discrete

approximation Eqs.(22)-(23) is bounded as

X
k

kr � qN (t)kDk � C
X
k

�
h��1

np�1
kqkWp(Dk) + t

h��2

np�7=2
max
s2[0;t]

kq(s)kWp(Dk)

�
;

where � = min(p; n+ 1) and p � 0.

Proof. Considering the local divergence of H on any D we have

kr � (H �HN )kD � kr � (H �PNH)k
D
+ kr � (PNH �HN)kD :

The �rst term we can bound immediately through Lemma 4.1 as

kr � (H �PNH)k
D
� C

h��1

np�1
kHkWp(D) ;

where � = min(p; n+ 1) and p � 1.

Utilizing the inverse inequality [25]

kr � uNkD �
n2

h
kuNkD ;

for all uN 2 P 3
n(D), we can bound the second term as

kr � (PNH �HN )kD � C
n2

h
kPNH �HNkD

� Ct
n2

h
max
s2[0;t]

PNT
H(t)


D

� Ct
h��2

np�7=2
max
s2[0;t]

�
kE(s)kWp(D) + kH(s)kWp(D)

�
;

by combining the results of Lemma 4.7 and Theorem 4.8. An equivalent bound can be obtained for the

divergence of EN in the case of a source free medium which, combined with the above, yields the result.

As could be expected, the result inherits the temporal linear growth from the convergence result and

con�rms the possibility of recovering spectral convergence of the divergence under the assumption of suÆcient

smoothness of the solutions. It should be noted that while the result con�rms high-order accuracy and

convergence, the estimate for the actual convergence rate is almost certainly suboptimal and leaves room for

improvement.

4.6. Entr'acte on the Scattered Field Formulation. Let us briey return to an analysis of the

scattered �eld formulation discussed in Sec. 2.1, with the modi�ed scattered �eld equations given in Eqs.(7)-

(8). We recall that we split the solution, q, as

q = qs + qi ;
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and exploit the linearity of Maxwell's equations to solve for the scattered �eld, qs, subject to the forcing by

the incident �eld, qi. As discussed in Sec. 2.1, this does not alter the scheme in any signi�cant way except

at metallic boundaries where the boundary condition on the electric �eld component takes the form

n�Es;+
N = �n�Es;�

N � 2PNE
i ;

in the notation of Lemma 4.4, while the boundary condition on the magnetic �eld remains

n�Hs;+
N = n�Hs;�

N :

Since this constitutes the only di�erence, we can restrict the subsequent analysis to the case of a metallic

object in vacuum without loss of generality as all other complications are covered by the analysis of the total

�eld scheme.

It suÆces to consider the behavior of the computed solution which can be bounded as stated in the

following.

Theorem 4.10. Assume that a scattered �eld solution, qs 2 W p(D), p � 3=2 to Maxwell's equations

in 
 =
S
k D

k exists, and that the incident �eld qi 2 W p(D), p � 3=2. Then the energy of the numerical

scattered �eld solution, qsN , to the semi-discrete approximation of Eqs.(7)-(7) is bounded as

X
k

kqsN (t)kDk �C
X
k

�PNq
i(t)


D
k

+
PNq

i(0) + qsN (0)

D
k + t max

s2[0;t]

T q;i(s)

D
k

�
;

where C depends on the material properties and the angle conditions of the elements but not on h and n.

Proof. The proof proceeds in a way very similar to that of Theorem 4.8. Combining the equation for the

scattered �eld solution, qsN , with the equation describing the projection of the incident �eld, PNq
i, summing

over all the faces and using qsN + PNq
i as the test function we recover

1

2

d

dt

X
k

qsN + PNq
i
2
D
k ��

X
Interior Faces

[PNq
i + qsN ]

2
D
k

�4
X

PEC Faces

[PNE
i +Es

N ]
2
D
k

+
X
k

�PNq
i + qsN ;PNT

q;i
�
D
k ;

where the dissipative terms are gathered over the interior and PEC faces separately due to di�erent boundary

conditions, while the global sum involves the truncation error, PNT
q;i, associated with the projection of the

incident �eld.

This latter term can be bounded as in Lemma 4.7

PNT
q;i

D
� C

h��1

np�3=2

qi
Wp(D)

;

where � = min(p; n+ 1).

Proceeding as for Theorem 4.8 we subsequently recover
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X
k

qsN (t) + PNq
i(t)


D
k �C

X
k

qsN (0) + PNq
i(0)


D
k

+t max
s2[0;t]

X
k

PNT
q;i(s)


D
k ;

from which

X
k

kqsN(t)kDk �C
X
k

PNq
i(t)


D
k

+
X
k

qsN (0) + PNq
i(0)


D
k + t max

s2[0;t]

X
k

PNT
q;i(s)


D
k ;

thus establishing the result.

Hence, also the scattered �elds remain bounded up to linear growth in time. An interesting di�erence

between this result on that of Theorem 4.8 for the total �eld formulation is that the accuracy and growth rate

of the former is controlled solely by the smoothness of the incident �eld with the potential for exponential

convergence for suÆciently smooth illuminating �elds.

5. Validation and Performance of the Scheme. Having developed the complete formulation for

the time-domain solution of Maxwell equations, supported by a thorough convergence analysis, it is now

time to consider the actual performance of the computational framework.

In the following we shall discuss the validity of the main theoretical results through a few examples

as well as exemplify the versatility and overall accuracy and performance of the complete framework for a

number of benchmarks. Temporal integration of the semi-discrete approximation given in Eqs.(20)-(21) is

done using a 4th order, 5 stage low-storage Runge-Kutta scheme [36] and a stability limited time-step scaling

as

�t � CFLmin



p
"r�rj�j�1 ;

with
p
"r�r reecting the modi�ed local speed of light due to materials and

� =
jr�j
��

+
jr�j
��

+
jr�j
��

:

Here j � j refers to the absolute value of each and of the vector components, i.e., jr�j = [j�xj; j�yj; j�z j]T .
Hence, � provides a measure of the local grid-distortion as a consequence of the mapping, 	, of I into D, and

(��;��;��) measures axial distance separating neighboring nodal points in I. In this setting CFL typically

takes values of O(1) while the time step, �t, scales as �t ' l=n2 where l is the minimum edge length on all

tetrahedra and n is the polynomial order of the approximation.

As a general measure of error we shall use the discrete Lp-norm of the error de�ned as

kÆf(t)kp =
0
@X

j;k

�
fN (x

k
j ; t)� f(xkj ; t)

�p1A
1=p

;

where fN (x; t) is the numerical approximation to the exact value, f(x; t) summed over all nodes, j, within

each of the k elements.
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Fig. 3. In a) is shown the temporal envelope of the maximum error on Hy(t) in the two-dimensional cavity for di�erent

orders, n, of the approximation. The slope of the linear growth is plotted in b), con�rming spectral convergence as predicted

in Theorem 4.8.

5.1. Elementary Tests and Veri�cation of Theoretical Results. As a �rst veri�cation of the

theoretical estimates, and in particular the linear growth predicted in Theorem 4.8, we consider the solution

of the two-dimensional Maxwell's equations in the TM-polarization, i.e., we solve for (Hx; Hy; Ez). There

is, however, nothing special about this polarization.

The computational problem is that of a simple two-dimensional vacuum �lled cavity, assumed to be

de�ned by (x; y) 2 [�1; 1]� [�0:25; 0:25], with the walls at x = �1 taken to be perfect electrical conducts

while the cavity is assumed to be periodic in the y-direction. The initial condition is a simple oscillatory

cavity solution as

Hx(x; y; 0) = 0 ; Hy(x; y; 0) = cos(�x) ; Ez(x; y; 0) = 0 ;

and the computational domain is discretized by 8 equivalent isosceles, each with 0.5 wavelength long sides.

In Fig. 3 we show the temporal envelope of the maximum error of Hy(t), computed using the same

eight elements while increasing the order of the approximation. Following the main result, Theorem 4.8, we

expect that the error can grow at most linearly in time and that the growth rate should vanish spectrally for

smooth solution. The results in Fig. 3 not only con�rm the validity of both statements but also illustrates

that Theorem 4.8 is sharp, i.e., we can not in general guarantee slower than linear error growth, although

we can control the growth rate by the order of the approximation.

To further evaluate the performance of the scheme, let us briey consider the behavior of the divergence

and the ability of the scheme to propagate waves over long distances. For this purpose we shall continue to

consider the propagation of plane waves in simple rectangular domains, tiled using isosceles, each with an

edge length of 0:5 wavelength. In Fig. 4 we show the global L2-error of the divergence ofH for a plane wave

propagating in a fully periodic domain being 2 wavelengths long and 0.5 wavelength wide, tiled using only 8

triangles. Consistent with the theoretical result in Theorem 4.9 the scheme preserves the divergence error to

the order of the scheme, i.e., the error vanishes spectrally as we re�ne the order, n, of the approximation. The

very notable even-odd behavior in the convergence is a consequence of the alignment with the triangulation.

The ability to propagate waves over very long distances is likewise illustrated in Fig. 4 where we also show

the L2-error of the Hy component. Contrary to the small problems considered �rst, we are here considering

a 200 wavelength long domain and with the exact solution being use to truncate the computational domain.

The domain is tiled using isosceles with an edge length of 0.5 wavelength and a total of 800 elements. We
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Fig. 4. In a) is shown the global L2-error of the divergence of H for a plane wave propagating in a fully periodic domain

as a function of time and order of approximation, n, con�rming that the scheme conserves divergence to the order of the

approximation, i.e., it decays spectrally with increasing polynomial order. The L2-error of Hy as a function of time and order

of approximation, n, in a 200 wavelength long domain is shown in b), con�rming the ability to propagate waves over very long

periods of time using only few points per wavelength.
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Fig. 5. In a) we illustrate the prism tiled using three high-order tetrahedra while b) illustrates the maximum of Hx for a

(y; z)-polarized plane wave propagation as a function of time and order of the approximation, n, con�rming spectral convergence

for the three-dimensional case.

observe in Fig. 4 an expected slow error growth until t = 200 after which it settles at a maximum error

level. This level, however, decays spectrally as we increase the order, n, of the approximation. Using as a

guideline that two edges span a wavelength, we see that with 7 points per wavelength (two n = 3 triangles)

yields about 10% error, only 9 points per wavelength (two n = 4 triangles) results in about 1% error while 11

points per wavelength (two n = 5 triangles) ensures about 0.1% error after 400 periods. This is a testament

to the advantage of using a high-order framework for wave propagation problems.

Let us �nally consider a simple three-dimensional test case in which we have tiled a straightfaced prism

using three straightfaced tetrahedra as illustrated in Fig. 5. The test is that of a plane wave propagating

through the prism with the exact solution being used as the boundary conditions. As shown in Fig. 5 we

recover a rapid exponential convergence as the order, n, of the approximation is increased.

5.2. Two-Dimensional Examples. Having veri�ed the performance of the basic computational setup

as well as the theoretical estimates, let us now consider problems of a less simple and more realistic character.

This shall not only allow us to illustrate more general features of the proposed framework but shall also be
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Fig. 6. In a) is shown the �nite element grid, consisting of 854 triangles, used for computing scattering by a perfect

electrically conducting cylinder of size ka = 15�. A section of the grid in b) illustrates the bodyconforming nature of the grid

and the nodal grid supporting the high-order approximation.

used to verify that all the properties of the high-order unstructured grid approach, seen so convincingly in

the last section for simple examples, carry over to the solution of more realistic problems.

We shall focus the attention on problems described by the two-dimensional TM-polarized Maxwell's

equations on the form

�r
@Hx

@t
= �@Ez

@y
;(31)

�r
@Hy

@t
=

@Ez

@x
;

"r
@Ez

@t
=

@Hy

@x
� @Hx

@y
;

subject to boundary conditions between two regions with material parameters, "
(k)
r and �

(k)
r , for k = 1; 2, as

n̂�H(1) = n̂�H(2) ;

E(1)
z = E(2)

z :

Here H(k) = (H
(k)
x ; H

(k)
y ; 0)T and n̂ = (n̂x; n̂y; 0)

T represents a unit vector normal to the interface. For the

case of a perfectly conducting metallic boundary the condition becomes particularly simple as

Ez = 0 :

The computational domain is truncated with a Cartesian PML [37] using a quadratic absorption pro�le.

It is worthwhile emphasizing that results of equal quality and overall accuracy as the ones shown in the

following for the TM-polarized case has been obtained for the TE-polarized case.

As a �rst example we consider that of plane wave scattering by a perfectly conducting circular cylinder

with a radius of a = 7:5�, i.e., ka = 15�. The surrounding medium is assumed to be vacuum, i.e., "r = �r = 1.

The �nite element grid, consisting of 854 triangles, utilized for this computation is shown in Fig. 6 along with

a section of the grid illustrating the full bodyconforming nature of the approximation as well as the nodal grid

supporting the high-order approximation. Maxwell's equations are solved in the scattered �eld formulation
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Fig. 7. In a) is shown the bistatic radar cross section, RCS(�), as computed using the exact series representation as well

as the unstructured grid method at di�erent polynomial orders, n. Evidence of high-order convergence for the RCS-computation

is given in b) showing exponential decay of the error in RCS(dBm) with increasing order of the approximation.

and Prony extrapolation [38] is used to reduce the required computing time to reach the harmonic steady

state.

In Fig. 7 we compare the computed bistatic radar cross section, RCS(�), with the exact series solution

[39], for various orders, n, of the approximation using the �nite element grid illustrated in Fig. 6. As

expected we observe a very rapid convergence with increasing n, yielding a reasonable engineering accuracy

computation with the 4th order scheme while increasing the order to n = 8 results in a perfect match. A

quantitative con�rmation of this is also shown in Fig. 7, illustrating the expected exponential convergence

of the RCS with increasing n.

One of the most appealing advantages of a high-order framework on simplices is the ability to import

a strongly skewed �nite element grid and recover a fully converged solution by increasing the order of the

approximation rather than having to reconstruct an improved �nite element discretization. This property

is particularly important and useful for large three-dimensional problems where the grid generation phase

can be very complex and time-consuming. As an illustration of this approach to convergence, we consider

in Fig. 8 the plane wave scattering from a PEC cylinder with a radius of one wavelength, i.e., ka = 2�. The

measure of accuracy and convergence is based on the observation that the symmetry of the problem makes

one expect the scattered �elds themselves maintain a high degree symmetry.

This is indeed con�rmed in Fig. 8 where we show a deliberately chosen poor grid and the rapid recovery

of the symmetry of one of the scattered �eld components, Hx, as the order, n, of the approximation is

increased without modifying the underlying �nite element grid. The detail to which the symmetry is restored

is particularly noteworthy.

As an illustration of the capability to handle materials let us consider plane wave scattering by a pene-

trable circular cylinder with a radius of a = 3:5� consisting of an ideal dielectric with "r = 2:0, i.e., similar to

that of glass. The problem is again solved in a pure scattered �eld formulation and the fully body-conforming

�nite element discretization, consisting of a total of 1020 triangles, is illustrated in Fig. 9. We note that

the absorbing PML layer, containing about 2/3 of the total amount of triangles is unnecessarily thick for

illustration only and can be decreased without loss of accuracy.

As is likewise illustrated in Fig. 9 we recover the full bistatic radar cross section, RCS(�), with excellent

correspondence to the exact solution [40] and quantitative agreement over a 40 db dynamic range.
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b) Hx Component - n = 4
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c) Hx Component - n = 6

X/λ

Y
/λ

-5 -4 -3 -2 -1 0 1 2 3 4 5
-5

-4

-3

-2

-1

0

1

2

3

4

5
d) Hx Component - n = 8
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e) Hx Component - n = 10

X/λ

Y
/λ

-5 -4 -3 -2 -1 0 1 2 3 4 5
-5

-4

-3

-2

-1

0

1

2

3

4

5
f) Hx Component - n = 12

Fig. 8. Example of convergence by increasing the order of the approximation, n, on a deliberately chosen highly skewed

�nite element grid, illustrated in a). The convergence is illustrated in b)-f) for increasing the order from 4'th order to 12'th

order, showing a complete recovery of the expected symmetry of the scattered �eld component, Hx.

5.3. Three-Dimensional Examples. As a �rst veri�cation of the general three-dimensional frame-

work, let us consider plane wave scattering by a ka = 10 perfectly conducting sphere, the analytic solution

of which is given by a Mie-series [39].

We use a fully bodyconforming grid with a total of 3000 elements, having an average edge length at the

sphere of 4�=5. Contrary to the two-dimensional case where we used a PML to truncate the computational

domain we choose in the three-dimensional case to embed the sphere in a (20�)3 cube and employ stretching

of the elements as one approaches the outer boundary. The grid is stretched such that the average edge is

about 2� at the outer boundary. As in the two-dimensional case, all examples are done using a 4th order
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Fig. 9. Plane wave scattering by a ka = 7� dielectric circular cylinder with a relative permittivity "r = 2:0. In a) we

show the �nite element discretization while b) shows a comparison between the computed bistatic radar cross section, RCS(�),

obtained with a 10'th order approximation and that recovered by evaluating the exact solution.
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Fig. 10. Plane wave scattering by a ka = 10 metallic sphere for a �xed grid and increasing order, n, of the polynomial

approximation. In a) we show the convergence of RCS(�,0) for vertical polarization (TM), while b) shows RCS(�,90) for

horizontal polarization (TE) of the incident �eld.

low-storage Runge-Kutta scheme to advance in time and Prony extrapolation to identify the solution.

In Fig. 10 we illustrate the convergence of the scheme with a �xed grid when increasing the order of

the approximation within each tetrahedron. Even for n = 3, i.e., a third order scheme with about 5 points

per wavelength, do we compute a reasonable solution while increasing the order yields a rapidly converging

solution as one would expect.

As a considerably more challenging problem, let us consider scattering by a perfectly conducting business

card sized metallic plate as illustrated in Fig. 11. The horizontally polarized plane wave impinges at the

metallic plate at an almost grazing angle, causing the excitation of very strong waves along the edges of the

metallic plate. These waves contribute dramatically to the scattering process and need to be resolved to

accurately predict the far �eld scattering.

This problem, being one of the EMCC benchmark problems [41] for code validation, is addressed by

using a total of 27000 straightsided tetrahedra, each supporting a 4th order polynomial approximation. The

average edge length at the edge of the business card is approximately �=5. The metallic plate is embedded

in a (20�)3 cube, with the elements being stretched to about 4� at the outer boundary.
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Fig. 11. In a) we show the geometry for the plane wave scattering by a metallic business card while b) shows the comparison

between monostatic RCS experimental results [41] (full line) for horizontal polarization of the illuminating �eld and particular

computed data points (�).

In Fig. 11 we also show the comparison between the experimentally measured monostatic RCS [41] and

a number of particular computed data points. Again we observe good agreement over the full azimuthal

range with results well within the experimental error. The most signi�cant discrepancy of a few dB for � � 0

is consistent with other published results [41].

As a �nal example of the performance of the three-dimensional framework we shall consider plane wave

scattering from a dielectric cylinder of �nite length. As illustrated in Fig. 12, the length of the cylinder is 5�

and the non-magnetic material has a permittivity of "r = 2:25, similar to that of glass. Clearly, the nature

of the �elds is less dramatic than in the previous case and we �nd that using a total of approximately 67000

elements, supporting a 4th order approximation and with an average vacuum edge length at the cylinder of

�=3, suÆces to accurately predict the far �eld scattering. The full computational domain is a cylinder of

radius 16� and length 23� with the stretched elements having a average length of 4� at the outer boundary.

In Fig. 12 we show a direct comparison between the full bistatic RCS for a plane wave impinging directly

at the end of the cylinder as computed using the current framework as well as an independently veri�ed

pseudospectral multi-domain axi-symmetric code [12]. As expected we �nd an almost perfect agreement

between the results of the two schemes over approximately 50 dB dynamical range.

5.4. Parallel Performance. The discontinuous element formulation of the scheme enables a highly

eÆcient implementation at contemporary large scale distributed memory machines. While this is a lesser

concern for the two-dimensional schemes, it is essential to enable the modeling of large scale three-dimensional

problems.

The developed schemes are implemented in a combination of Fortran and C with all computationally

intensive part written in Fortran and taking advantage of Level 3 BLAS [42] where possible. The parallel

interface is written in MPI [43] with METIS [44] used to distribute the elements over the processors. To

ensure high cache eÆciency, we employ bandwidth minimization [45] of the nodal points locally to the

processors [46]. For computations maximizing the capacity of the processors, i.e., �lling the local memory,

this is critical to ensure high performance.

In Table 1 we list the parallel speedup relative to the n = 2 case as the number of processors are

increased. A few things are worth noting. For a �xed size problem, the parallel speedup decreases slightly

as the number of processors increases which is natural as the relative communication cost increases. On
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Table 1

Parallel speedup for a 123.000 element grid, scaled to timing for n = 2 on 4 processors (- implies insuÆcient memory

local to the nodes).

Polynomial Degrees of Number of processors

order (n) freedom (�106) 4 8 16 32 64

2 7.4 1.0 2.0 3.9 7.5 13.7

3 14.8 - 0.9 1.8 3.5 6.4

4 25.8 - - 1.0 1.9 3.6

5 41.3 - - - 0.8 1.6
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Fig. 12. In a) we show the geometry for the plane wave scattering by a dielectric �nite length cylinder while b) shows

the RCS(�,0) for vertical polarization (�) of the illuminating �eld and RCS(�,90) for horizontal polarization (�) compared with

results obtained using a pseudospectral axi-symmetric code (full line) [12]

the other hand, for problem sizes utilizing the available resources we �nd a very high parallel eÆciency,

e.g., increasing the problem size and the number of processors yields a close to constant speedup. The data

also show a minor decrease in relative performance for high order on many processors, which we speculate

is related to cache e�ects known to be become important as the size of the operators increase [29]. We

generally observe better than 90% parallel eÆciency, consistent with other similar studies [47].

6. Concluding Remarks and Outlook. The main purpose of paper has been to introduce the reader

to a new class of high order unstructured grid methods suitable for the time-domain solution of Maxwell's

equations. A number of central elements separate the current framework from previous attempts to develop

high-order accurate methods on unstructured grids. The use of a purely nodal basis has a number of

advantages in terms of ease of implementation by simple matrix-vector operations as well as the promise

to yield a highly eÆcient implementation. Furthermore, the generalized discontinuous penalty scheme was

introduced, o�ering an inherently parallel discontinuous formulation with a purely block-diagonal mass

matrix which can be inverted in preprocessing.

The particular focus on Maxwell's equations allowed us to develop a complete, if not optimal, convergence

theory. A similar analysis can be completed for other classes of linear problems such as acoustics and linear

elasticity. We have con�rmed the results of the analysis by thorough computational experiments, illustrating

the exibility, versatility, and eÆciency of the proposed high-order accurate unstructured grid framework.

While we have focused on linear systems in general and Maxwell's equations in particular, the central

elements of the framework allows for more general formulations that enable the solution of typical nonlinear
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systems of conservation laws. This naturally raises questions about proper formulation of the uxes at

interfaces, conservation, entropy solutions and stability of high-order schemes when approximating problems

with discontinuous solutions. We shall address these issues in [30] where we shall also demonstrate the

performance of such generalized formulations for the solution of conservation laws.

Acknowledgment. The authors extend their appreciation to Prof. D. Gottlieb and Dr. A. Ditkowski,

Brown University, for many fruitful discussions.

EÆcient and Accurate Implementation Techniques. From the discussions in Sec. 3.2 it is clear

that the Vandermonde matrix, V, plays a crucial role in setting up the discrete operators for interpolation

and di�erentiation. The properties of V, e.g., its conditioning, depends exclusively on the structure of nodal

set, �j , and on the way in which we choose to represent the basis, i.e., pi(�). While the former is chosen to

ensure well behaved Lagrange interpolation polynomials, we have signi�cant freedom in the speci�cation of

pi(�).

A particularly simple choice is that of the multivariate monomial basis, i.e., pi(�) = �i�j�k. However,

even for interpolation in one dimension, i.e., pi(�) = �i, is it well known that this basis leads to the classical

Vandermonde matrix with an exponentially growing condition number. Hence, even for moderate values of

n can we expect severe problems when attempting to compute the action of V�1. The well known solution

to this problem is to choose a basis that is orthonormalized with respect to some proper inner product to

assure the maximum degree of linear independence of the basis.

Such a basis has been known for long [48, 49, 50] and takes the form

 ijk(�) = P
(0;0)
i (r)

�
1� s

2

�i

P
(2i+1;0)
j (s)

�
1� t

2

�i+j

P
(2i+2j+1;0)
k (t) ;(32)

where

r = �2(1 + �)

� + �
� 1 ; s =

2(1 + �)

1� �
� 1 ; t = � ;

and P
(�;�)
n (x) signi�es the classical Jacobi polynomial of order n [51].

The tensor product structure of the basis, Eq.(32), becomes evident when one realizes that while � is

restricted by I, the mapped coordinates, (r; s; t), covers [�1; 1]3. Furthermore, it is easy to see that the

polynomial space P3
n can expressed as

P3
n = span f ijk(�); i; j; k � 0; i+ j + k � ng :

An important property of the basis, Eq.(32), is its orthogonality on I [21] asZ
I

 ijk(�) pqr(�) d� = ijkÆijk;pqr ;

where Æijk;pqr is the multi-dimensional Dirac delta and the normalization is

ijk =
2

2i+ 1

22i+2

2(i+ j) + 2

22(i+j)+3

2(i+ j + k) + 3
:

Let us introduce the index, � 2 [0; N ], reecting some chosen ordering of (i; j; k) and hence  ijk . We can

thus rename the polynomial basis  ijk(�) =  �(�) to simplify the notation in the subsequent discussion.
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With this machinery in place, let us address how to initialize the basic operations and the associated

operators needed for solving partial di�erential equations with the current context in an eÆcient and accurate

manner.

Using the orthogonal basis,  �, it is natural to de�ne the Vandermonde matrix to have the entries

Vij =
1p
j
 j(�i) :

The relation between the nodal and the modal representation of a function, f , follows directly from Eq.(12)

as

f = Vf̂ ; f̂ = V�1f :

Furthermore, we can compute the entries of the di�erentiation matrices directly by de�ning the entries of

P(�;�;�), Eq.(15), using the derivatives of  i(�) expressed explicitly by the identity [51]

d

d�
P (�;0)
n (�) =

1

2
(n+ 1+ �)P

(�+1;1)
n�1 (�) :

In an equally simple and straightforward way we can de�ne spatial �ltering matrices, F, as

F = V�(i; j; k)V�1 ;

where the order p �lter itself is de�ned as

�(i; j; k) = exp

�
��

�
(i+ j + k)(i+ j + k + 3)

n

�p�
;

such that �ltering is accomplished through a straightforward matrix multiply at a cost equivalent to that of

computing a spatial derivative.

While the interpolation, di�erentiation, and �ltering operators will play a crucial role in the solution of

the partial di�erential equations, we shall also need to evaluate inner products on the general curvilinear

tetrahedron, i.e., we shall need an eÆcient and accurate procedure for computing

(fN ; gN)D =

Z
I

fN (�)gN(�)J(�)d� ;

where J refers to the transformation Jacobian for the mapping between D and I and fN 2 P 3
n , gN 2 P 3

n .

To evaluate this inner product, we exploit that fN and gN are expressed uniquely by their expansion in

Lagrange polynomials as

(fN ; gN)D =

NX
i;j=0

figj

Z
I

Li(�)Lj(�) J(�) d� :

Furthermore, using the basis itself,  �(�), we can express the Lagrange polynomials themselves using Eq.(14)

on the form

Li(�) =

NX
k=0

V�1ik  k(�) :

This immediately yields the expression
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(fN ; gN)D =
NX

i;j=0

figj

NX
k;l=0

V�1ki V
�1
lj

Z
I

 k(�) l(�)J(�) d�(33)

=

NX
i;j=0

figj

NX
k;l=0

V�1ki V
�1
lj Wkl ;

where the symmetric matrix of weights, W, has the entries

Wkl =

Z
I

 k(�) l(�)J(�) d� :

On matrix form Eq.(33) becomes

(fN ; gN)D =
�
V�1f

�T
WV�1g :

For all elements we may precompute (V�1)TWV�1 in a preprocessing stage, storing only the upper half of

the operator due to symmetry. In the particularly important case where D is a straightsided tetrahedron,

i.e., J is a constant, the orthonormality of  � implies that W = JI, where I represents the identity matrix.

Hence, through a simple linear scaling one recovers the weights for all tetrahedra with planar faces. For the

general case where J(�) is non constant, the entries of W are computed exactly through over-integration by

product rules based on Legendre Gauss quadratures [52].

A �nal key operation needed for the implementation of the scheme is surface integration, i.e.,

(fN ; gN )ÆD =

I
ÆI
fN(�)gN (�)J(�) d� ;

where J(�) refers to the surface Jacobian only. While one could proceed as for the volume integral discussed

above, it is more natural to exploit the uniqueness and completeness of the Lagrange interpolation. To

illustrate the procedure, let us restrict attention to one of the faces, face 'd' (see Fig. 1), and term those

Nd
n = 1

2 (n + 1)(n+ 2) nodes positioned at that face for �d. Clearly, using the exact same procedure as for

the three-dimensional Lagrange polynomial discussed above, we can compute a two-dimensional Lagrange

polynomial, ldj (�; �) based on �d. As for Lj(�), we can recover ldj as the solution to the dual problem

�
Vd
�T
ld = pd ;

where the entries of the Vandermonde matrix is

Vd
ij = pdj (�

d
i ) :

The proper basis to use is the two-dimensional version of Eq.(32) given directly as pdj (�; �) =  ij0(�; �;�1).
This allows us to proceed exactly as for the volume integration and express the integration over face 'd' asZ

face d

fN (�; �;�1)gN(�; �;�1)J(�; �;�1) d� d� =
��
Vd
��1

f
d
�T

Wd
�
Vd
��1

gd ;

where fd = [fN(�
d
0); :::; fN (�

d
Nd
n
)]T is the trace of fN at the face. A similar de�nition is used for gd. The

matrix of surface weights are given as

Wd
ij =

Z
face d

 i(�; �;�1) j(�; �;�1)J(�; �;�1) d�d� :
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In the important special case where the face is planar and has straight edges, orthonormality of the poly-

nomials immediately implies that Wd = JdI as for the volume case. For the general case we shall use a

cubature rule [53, 54, 55] of suÆciently high order to evaluate the inner product, i.e., we need to interpolate

the polynomials, fN and gN , onto the M cubature nodes, �d;cub; situated at the face. This is done by the

introduction of the interpolation operator

H = PT
�
Vd
��1

; Pij = pdi (�
d;cub
j ) ;

i.e., P is an Nd �M operator. The evaluation of the inner product is then accomplished asZ
face d

fN (�; �;�1)gN(�; �;�1)J(�; �;�1) d� d� =
�
fd
�T

HTWHgd ;

where the entries of the diagonal M �M matrix of weights are given as

Wii = wi

Nd

nX
k=0

HikJ(�
d
k) ;

containing the weights wi of the cubature as well as the interpolation of the transformation Jacobian of the

curvilinear face. While this formulation leads to the most compact scheme it proves advantageous to operate

directly on the values at the cubature nodes as they do not include the edges and vertices, i.e., we can

establish a clean face based connection between elements without considering the multiplicity of solutions at

vertices and the added complexity this introduces for the implementation and performance. Needless to say,

the whole discussion for the evaluation of the integral over face 'd' carries over directly to the other faces,

hence completing the evaluation of the full surface integral.

It is important to realize that all the operators introduced in the above can be initialized during a

preprocessing phase. Furthermore, it is worth recalling the discussion in Sec. 3.1 in which we found that any

two straightfaced tetrahedra are connected through a linear transformation. Hence, for any straightfaced D

we can form any of the operators discussed in the above directly by a linear scaling of hard-coded template

operators de�ned on I. This saves not only preprocessing time but also reduces the required storage space

very substantially.
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